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ABSTRACT 

We introduce a notion which is intermediate between that  of taking the 

w*-closed convex hull of a set and taking the norm closed convex hull of 

this set. This notion helps to streamline the proof (given in [FLP]) of the 

famous result of James in the separable case. More importantly, it leads 

to stronger results in tile same direction. For example: 

1. Assume X is separable and non-reflexive and its unit sphere is 

covered by a sequence of balls {Ci}~__ 1 of radius a < 1. Then for every 

sequence of positive numbers  {ei}~=l tending to 0 there is an f C X*,  

such that  ][f]] = 1 and f ( x )  < 1 - e,, whenever x C Ci, i = 1,2 . . . . .  

2. Assume X is separable and non-reflexive and let T: Y --~ X* be a 

bounded linear non-surjective operator. Then there is an f C X* which 

does not at tain its norm on BX such that  f ~ T(Y).  
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1. I n t r o d u c t i o n  

Let X be a real Banach space and let K be a w*-compact convex subset of X*. 

A subset B C I(  is called a boundary for K if for every x C X there is an f E B 

so that f(x) = sup{g(x) : g e K}. Known results in the literature show that 

under certain assumptions (if B is norm-separable [R] or if X is separable and 

11 ¢: X, i.e., X does not have a subspace isomorphic to 11, [G]) the set K is 

the norm closed convex hull of B. The result of [R] mentioned above implies 

the famous result of James [J] in the separable case. Indeed, let B be a closed 

convex bounded and separable subset of the separable Banach space X so that 

every f E X* attains its maximum on B. The w*-closure K of B in X** is 

a w*-compact convex set. By the assumption B is a boundary for K. Hence, 

by the result just quoted, the norm-closed convex hull of B (which is B itself) 

coincides w i t h / (  and thus B is weak-compact. 

In [FLP] a new proof is given to the result of [R]. By analysing this proof we 

were led to a new concept of generating a w*-compact convex set K by a subset. 

This concept is intermediate between taking the w*-closed convex hull and the 

norm-closed convex hull. In Section 2 we formally define this intermediate notion 

and apply it to derive the results of [R] and [G] mentioned above. The proof of 

these results is essentially the same as in [FLP] but the formulation is somewhat 

different. 

In Sections 3 and 4 we demonstrate that this new concept is of interest also in 

some other contexts and use it to prove some new results. In Section 3 we take 

a (usually non-closed) cone A in a separable space X with vertex at the origin 

(i.e., x E A ~ ,kx E A for all real ,k). We consider a subset B C Sx* such that 

for any x E A with ]lxll = 1 there is an f C B with f(x) = 1. The question 

we consider is "how massive has A to be in order that Bx.  is the norm-closed 

convex hull of B?" (we assume of course as before that either B is separable or 

X ~ 11). By using the method of proof in Section 2 we are able to give a quite 

satisfactory answer to this question. It turns out that to get this result we have 

to work not only with the given norm in X but with the set of all equivalent 

norms. 

We also prove in Section 3 that if X ;~ lt, then for A to be massive enough for 

our purpose it suffices that the complement of A can be covered by a proper op- 

erator range (i.e., there is a Banach space Y and a bounded linear non-surjective 

operator T: Y --~ X so that X \ A C T(Y)). In particular, any cone A whose 

complement is generated by a countable set will do. 

In Section 4 we study, for separable non-reflexive X, the structure of the con- 
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tinuous linear flmctionals on X which do not a t ta in  their norm. This topic has 

been studied quite a tot ill the literature. We mention here just  three results 

which are relevant to our discusion in this paper. 

(i) The theorem of Bishop and Phelps [BP] which states tha t  for every closed 

convex bounded t (  C X the flmetionals which a t ta in  their max imum on It" form 

a norm-dense set in X*. 

(ii) The theorem of Phelps [P] which states tha t  if X has the R a d o n - N i k o d y m  

proper ty  (RNP) the functionals which a t ta in  their norm on the unit ball form a 

dense Gs-set in X* and thus those which do not a t ta in  their norm form a set of 

the first category. 

(iii) The result of Bourgain and Stegall (see [B], Theorem 3.3.5). This result 

yields tha t  if t (  is a non-dentable closed convex and bounded set in a separable 

Banaeh X space, then the set of all support  functionals of I (  forms a set of the 

first category in X*. 

Other  papers which have some relevant results are [NR] and [JM]. 

One of the main results proved in Section 4 is tha t  if X is separable and non- 
D oo reflexive and if we cover B x  by a sequence of balls { n}n=l of radius a < 1, then 

a" C O  for any sequence {~n}n=l with ~. -+ 0 as slowly as we wish there is an f E X* of 

norm 1 so tha t  sup{f (x )  : x E D~} is at most  1 - c,~ for every n. This is proved 

by the approach developed in Section 2. 

Another  result in Section 4 is tha t  the set of functionals in X* which do not 

a t ta in  their norm on B x  can never be covered by a proper operator  range. Proper  

operator  ranges are sets of the first category of a special type. Thus it is of interest 

to compare  this result with the result (ii) mentioned above. 

For background to this paper  and for notat ion we refer to the survey [FLP]. 

We just  recall tha t  if I~ is any set in a Banaeh space X,  we denote E ( K )  the set 

of non-zero functionals in X* which a t ta in  their max immn on I( .  

2. Intermediate representation property 

Let B be a subset of a w*-compact  convex set K in the dual X* of a Banach 

space X.  Besides tile usual ways in which B can generate t ( ,  namely (W) (A" is 

the w*-elosed convex hull of B) and (S) (K is the norm-closed convex hull of B),  

we introduce now an intermediate way (I). 

Definition 2.1: We say tha t  B (I)-generates K if for every representat ion of B 

as lJ,~°~=l C,~ we have tha t  t i  is the norm-closed convex hull of [-J,~--1 w* clco C~. 

Equivalently, if B is the union of an increasing sequence of sets {C,~},°°=l then 

Un~°__l w* el co Cn is norm-dense in K.  
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I t  is clear that  ( S ) ~ ( I ) = = * ( W ) .  In general, none of these arrows can be in- 

verted. If, for example, X = C[0, 1] and K = Bx*,  let B1 -- -t-Q (the rational 

points considered in a natural way as a subset of K)  and B2 = +[0, 1]; then B1 

(W)-generate K,  but clearly does not (I)-generate It'. Also, B2 (I)-generates I f  

(see Theorem 2.3 below) but does not (S)-generate K.  

In some important  special cases (I) and (S) coincide. 

PROPOSITION 2.2: Let B be a subset of a w*-compact set I (  in X*. Assume 

that either one of  the following hold: 

(a) B is norm-separable. 

(b) X is separable and does not contain a subspace isomorphic to 11. 

Then i f  B (I)-generates K it also (S)-generates K .  

Proo~ Assume that  (a) holds, and let {hn}n~=l be a dense sequence in B. 

Let e > 0 and put Cn = ( h n + e B x . ) R B .  Then i f B  (I)-generates K then 

K = elcoUa~__l w* elcoCn.  Since e > 0 is arbitrary it follows that  K = c leoB.  

Assume now that  (b) holds and that  B (I)-generates K but K ¢ el co B. Then 

by the separation theorem there are an F E X** and a constant a so that  

sup{F(g) : g e K} > a > sup{F(g)  : g e B}. 

X c~ By the result of Odell and Rosenthal [OR] there is a sequence { 'n}n=l in X so 

that  F = w ' l i m a  Xn. Put  Cn = {g C I f  : g(xi) < a , i  > n}. Clearly each Cn is 

w*-compaet, UnC~=l Cn ~ t~, and s u p { F ( g ) :  g e Ca} < a for every n. Since B 

(I)-generates K it follows that  K cl co ~ = Ua=I  Ca and, in particular, F(g) < a 

for every g E K,  a contradiction. I 

The main interest in (I) stems from the following result. 

THEOREM 2.3: Let I f  be a w*-compact convex subset of X* and B C K be a 

boundary. Then B (I)-generates K.  

oo 
Proof" Without loss of generality we may assume that  0 E B. Let B -- Ui=l Ci. 

oo Fix an c > 0 and a sequence of positive numbers {ci}i=0 so that  ~ < c. E i = 0  ~'i 

Put  

C o = e o B x . ,  K l = c o ( K u C o ) ,  B l = U ( l + e i ) C i ,  V * = w * c l c o B 1 .  
i = 0  

Clearly B c co B1 and, since B is a boundary, it follows from the separation 

theorem that  K1 C V*. It  is also clear that  V* is a w*-closed body in X* with 

0 E intV*. Let V be the polar of V* in X. 
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By the Kre in -Mi lman  theorem there is, for every f E V*, a probabi l i ty  measure  

l* p on the u -closure of B1 representing f ,  i.e., 

f ,  g(z)da(g), z E X. 
f(x) = * c l B 1  

Let f E E(V)  and x E OV be such tha t  f(x) = 1. I t  is clear tha t  s u p p #  C 

w* el B1 VI {g E V* : g(x) = 1}. We claim tha t  this set is in turn  contained in 

l 

U w* cl(1 4- ei)Ci 
i=0 

for some finite l. Indeed, if tha t  were not  the case then, by using limi ci -- 0, 

we would get {g E V* : g(x) = 1} ~ h" ¢ ¢ and thus max{g(x)  : g E K }  = 
oo C max{g(x)  : g E V*} = 1. Since B = Ui=l  i is a boundary  of K ,  it follows tha t  

for some j there is an h E Cj, with h(x) = 1. However, since (1 + ~j)hj E V* 
a n d  (1 + cj)hj(x) = 1 4 -~ j  > 1 w e  have arr ived at  a contradict ion,  and our  claim 

is proved. 

P u t  Do = (1 4- Co)Co and, for n > 1, 

Dn 

n - 1  

= ~* cl(1 + ~ ) c n  "- I,.J ~,* cl(1 + e ,d@.  
i=0 

Let a = {n : #n = p(Dn) > 0} and let hn be the barycenter  of # ~ l p  restr ic ted 

to D~, n E a .  Clearly, h~ E w* eleo(1 + cn)C~ for every n E a .  I t  is also clear 

tha t  f = }-~-nE~ #nh~. Pu t  

g = E #,~(1 + e n ) - l h n .  
n E d , n > 0  

Since 0 E B (and hence to some C , ,  'n > 0) it follows tha t  

oo 

9 E c l  co U 'u cl co C,i. 
i = l  

Note tha t  ]if - gll -< c(1 + L) where L = sup{llt[I : t E I (} .  Consequently,  

by the Bishop-Phe lps  theorem we get tha t  for every f E OV* there is a g E 

c lcoU~=l  w* c l c o C i  with I l l  - gll -< E(L + 2). The  same is t rue for every f E V* 

and, in par t icular ,  for f E It'. Let t ing c -+ 0 concludes the proof. I 
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l W* Remark: Tha t  supp#  C U~=0 cl(1 + c,i)Ci for some finite 1 was not really 

used in the proof above. What  is essential is only the fact that  

oo 

supp#  C U w* c1(1 + si)Ci. 
i = 0  

By combining Proposition 2.2 with Theorem 2.3 we get a new proof to the 

following known corollary. 

COROLLARY 2.4 ([R], [G]): Let B be a boundary of  a w*-compact convex K in 

X*. Assume either of the following: 

(a) B is norm-separable. 

(b) X is separable and X 73 11. 

Then B (S)-generates K .  

Corollary 2.4, (b) actually characterizes the spaces not containing a copy of 11 

among the separable Banach spaces (see [FLP], Theorem 5.14 and the references 

quoted in this paper). 

3. General izat ion of the  not ion  of boundary  

Let X be a separable Banach space and let W be the unit ball of some (equivalent) 

norm on X. We denote by W* (resp. W**) the corresponding unit ball in X* 

(resp. X**). 

Definition 3.1: Let P be a subset of 0W. We say that  B C O W *  is a P-boundary  

if, for every x E P,  there is an f E B with f ( x )  = 1. 

We shall usually consider subsets P of OW of the form PA,W = A A OW where 

A is a cone in X with vertex 0 (i.e., x C A ~ Ax C A for every real A). The 

reason we work here with cones A rather than just subsets of OW is in order 

to enable us to pass smoothly fronl one equivalent norm to another such norm. 

In most of the results of this section we are forced to work with the class of all 

norms equivalent to a given norm. 

Our main interest here is in the following property: 

(*) For any equivalent norm on X and any PA,w-boundary B we have that  W* 

is the norm-closed convex hull of B. 

Property (*) is clearly a stronger version than the assertion in Corollary 2.4. 

Therefore, it is not surprising that  we will make (implicitly or explicitly) the 

assumption that  either (a) or (b) of Corollary 2.4 holds. 

The situation is rather simple if X is reflexive. 
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PROPOSITION 3.2: Let X be a reflexive space and let A C X be a cone. Then 

(*) holds if  and only i rA  is dense in X.  

Proof'. Let X be reflexive and P = A N Sx  be ,lense in Sx .  Let f C str exp Bx* 

and x C Sx  be such that  f(a~) = 1. Let {:r,}n~__l be points in P which converge 
o o  to z and let {f,~},=l C B be such that  f~(xn) = 1 for all n. Then  fn(x)  --+ 1 

and, since f is s t rongly exposed, ]If - f~ I1 --+ 0. It  tollows tha t  the norm-closure 

of B contains str exp Bx*. Consequently (see, e.g., [P]), clco t3 = Bx*. 

Conversely, assume tha t  A is not dense in X.  Let z ~ Sx  and 5 > 0 be such 

tha t  A N ( z + ~ B x )  = 0 .  Let h C Sx .  b e s u c h  tha t  tt(z) = 1 and let 7 be the 

hyperplane {x C X : h(.r) = 0}. Consider now the cylinder 

W = c o { + ( z  + (~Bx n ~/))}. 

W is clearly the unit ball of an equivalent norm in X.  We shall show that  in 

this norm (*) fails. Indeed, i f x  E AN01/V t h e n , r  = A z + y  with IAI < l a n d  

y E (fBx N 7. Hence for f E 0W* with f( .r)  = 1 we have f ( z )  = 0 (otherwise 

f would a t ta in  a value larger than 1 at z + y or - z  + y). It  follows that  for 

B = E (P4 ,w)  we have B C z ± and, in particular,  the closed linear span of B is 

different from X*. | 

Remark: The "if" par t  of Proposi t ion 3.2 characterizes reflexive spaces, at least 

among  dual spaces. Indeed, let X = E*, A = E(BE) ,  P = Sx  n A  and B = SE C 

E** = X*. Then B is a P-boundary ,  A is dense in X (by the Bishop-Phelps  

theorem) and (*) fails. On the other hand, reflexivity is not applied in the proof  

of the "only if" part.  We will come back to this observation below. 

We consider next the following property:  

(**) c l c o E ( P A , w )  = W* for any equivalent norm on X. 

Note that  in the s ta tement  of (**) 11¢) specific boundary  appears. Obviously 

(**)==~(*). We shall prove below that  if (a) or (b) in Corollary 2.4 hold, then 

( * ) ~ ( * * )  and this is in a sense a generalization of Corollary 2.4. The method  

of proof  will be similar to the arguments  used in Section 2. Before we prove this 

we make some comments  on (**). We first note tha t  by the separation theorem 

(**) is equivalent to: 

(***) For any slice 

S ( F , a ) = { f c W *  : F ( f )  >_ 1-c~} ,  FEOW* * ,  a C  (0,1) 

of W* there is an f C S(F, (~) N OW* and an :r E PA,W with f (x )  = 1. 
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PROPOSITION 3.3: If  B x  \ A is not norming (Bx  is the unit ball of some norm 

in X and the assertion that B x  \ A is not norming means that 0 is not an interior 

point of c lco(Bx \ A)), then A has (**). 

Proof." We note first that  if B x  \ A is not norming, the same is true for W \ A 

for any unit ball of an equivalent norm. If A does not have (**) (or equivalently 

(***)) there is a slice S = S(F,  a)  of W* for some equivalent norm so that,  for 

any f • E(W) N O W * N S ,  there is a n x  • O W \ A  with f ( x )  = 1. By the 

Bishop-Phelps theorem we may assume without loss of generality that  F(g) = 1 

for some g • 3W*. 

Put  W~' = ( - (1  - a / 2 ) g + S ) N ( ( 1  - a / 2 ) g - S  ) and let W1 C X be the polar of 

W~'. W1 defines an equivalent norm on X. Since A is a cone (and thus symmetric 

with respect to 0), for every f • OW~ N E(Wt) there is an x • OWt ", A with 

f ( x )  = 1. Hence, by the separation theorem and the Bishop-Phelps theorem 

el co(0W1 \ A) = W1 and this contradicts the assumption that  OW~ \ A is not 

norming. I 

Remark: Proposition 3.2 shows that,  in general, the converse to Proposition 3.3 

is false. Indeed, let X be a reflexive space and let A C X be a dense cone such 

that  X "- A is dense too. 

We come now to the proof of the equivalence of (*) and (**) under the as- 

smnptions (a) or (b) in Corollary 2.4. The main step in the proof is contained in 

the following lemma. 

LEMMA 3.4: Let B C S x .  be such that w * c l c o B  = B x . .  Assume that B = 
o o  (Do Ui=l Ci, let e > 0 and {E'i}i= 1 be a sequence with 0 < ei < e for every i and 

lim~ ei = 0. Put 

o o  

V* = w * c l c o  U ( l + e i ) C i ,  V = { x e X : s u p { f ( x ) : f • V * } < _ l } .  
i=1 

Then 

(i) V C B x C ( I + e ) V .  
(ii) For z • 0V N int B x ,  h • OV* with h(z) = 1, there is a finite l such that 

h • coUl=~ w'el  co (1 + e~)ci. 

Proof: (i) Clearly V* C (1 + e)Bx* and hence B x  C (1 + e)V. To check that  

V C B x  we prove that  B x .  C V*. Since w 'e l  co B = Bx* it suffices to show 

that  0 C V*. Otherwise, we can find by the separation theorem an x e X and 
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an a > 0 so tha t  (1 + ci ) f (x)  > a for every f • C/, 1 < i < ec. This, however, 

contradicts  the assumption tha t  w*clco B = Bx* (and thus tha t  B contains 

elements f with f ( x )  < 0). 

(ii) The proof  runs along the lines of the proof  of Theorem 2.3 and thus we 
OO 

present only an outline of the proof. Pu t  B1 = Ui=l(l+ci)Ci and let h and z be as 

in (ii), in part icular  I lzll < 1. By the Kre in-Milman theorem there is a probabil i ty 

measure # supported by w* cl B1 representing h. Pu t  7 = { f  • X* : f ( z )  = 1}. 

Clearly, supp # C w* cl B1 n 7. 

Next, we claim tha t  3' meets at most  finitely many  of the sets w* cl(1 + ei)Ci. 

Indeed, otherwise we would get (since ei --+ 0) tha t  7 meets Sx*,  but  this contra- 

dicts the fact tha t  Ilzll < 1. Consequently, # is supported on Uli=l w* cl(1 +ei)Ci 

for some finite l. | 

THEOREM 3.5: Assume that A is a cone in X and that (**) holds. Let P = 

A n Sx .  Then any P-boundary B (I)-generates Bx*.  

Proof'. By the "only if" par t  of the proof  of Proposi t ion 3.2, A is dense in X 

(see the remark following Proposi t ion 3.2). Thus B (W)-generates B x . ,  i.e., 

w* cl B = B x . .  
oc C eo Let B = Ui=l  i and put  D = cl co ~Ji=l w*cl co Ci. If D is a proper subset of 

Bx*,  then there are an F ~ Sx** and a > 0 such tha t  s u p { F ( f )  : f E D} < 1 - a .  

Take a s e q u e n c e  ¢i ,0  < ei < ~ / 2  and limi¢i = 0. Define V and V* as in 

Lemma 3.4 and put  D1 = cl co Ui~=l w*cl co (1 + ei)G. 
Then s u p { F ( f )  : d e D1} < (1 - c~)(1 + a / 2 )  < 1 - a /2 .  Assume tha t  there 

are an f E O V * A S ( K a / 2 )  and an x E O V N f B x  with f ( x )  = 1. Then  by 

Lemma 3.4, f c D1, which is a contradiction. Thus for any f E OV* A S(F, a / 2 )  

and z E OV we have :r E Sx .  Such an x cannot  belong to P .  Indeed, since B 

is a boundary  for P there is a g • B such tha t  g(x) = 1. However, this g • Ci 

for some i and (1 + ei)gi • V*, i.e., (1 + ei)gi(z) > 1, which contradicts the 

assulnption tha t  x • 1 ~. 

Thus we have just  proved that  whenever f • OV* ;) S(F, a /2)  and x E OV 

with f ( x )  = 1 we have x E Sx  \ P. This shows tha t  (***) does not hold for A 

and this contradicts our assumption. II 

COROLLARY 3.6: Let A be a cone in a separable space X .  Assume that (**) 

holds. Then for any S x  N A-boundary B we have el co B = B x .  if  either B is 

separable or X ~ ll. 
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If  X \ A is a set of the first category, this does not guarantee that, A has (**). 

Consider the classical quasi-reflexive space J of James. There is an equivalent 

norm on J such tha t  in it J* is smooth  (see, e.g., [S]). Taking this norm in J let 

X = J*, A = E ( B j )  C J* and P = A N S j . .  Since J has the R N P  it follows from 

(ii) in the introduct ion tha t  X "- A is of the first category. Since the norm in X 

is smooth,  E ( P )  C J C J** = X*. Therefore c l c o ( S x .  N E(P ) )  c B j ,  which is 

a proper  subset of Bx* = B j**. Thus A fails to have (**). 

There is, however, a thin subclass of the class of sets of the first category so 

tha t  if X \ A belongs to this thinner subclass then A always has (**) if X 7) 11. 

This subclass is the class of all proper operator  ranges. Recall tha t  a subspace M 

(not closed in general) of X is called a proper operator  range if there are a Banach 

space Y and a bounded linear opera tor  T: Y --+ X such tha t  M = T ( Y )  ¢ X .  

THEOREM 3.7: Let  X be a separable Banach space with X 75 ll. Let  M C X 

be a proper operator range. Then A = X \ M satisfies (*) 

For the proof  of this theorem we need 4 lemmas. The first two are s tandard  

and we omit  their proofs. 

LEMMA 3.8: Let  M C X be a proper operator range. Then  either M is a closed 

subspace of  finite codimension or codim M = ~ .  

LEMMA 3.9: Let  T: Y -+ X be a bounded linear operator from a Banach space 

Y into X .  The following s ta tements  are equivalent: 

(i) cod i lnT(Y)  = oo. 

(ii) For every subspace L o f  X*  o f  finite codimension and every e > 0 there is 

an f • S t  such that  IIT*fll _< ~. 

LEMMA 3.10 ([F]): Let  A: E -+ X be a bounded linear operator from a Banach 
. o o  space E into X with c o d i m A ( E )  oo. Let  {3,i}i= 1 be a sequence in X and 

{~i}~----1 be a sequence o f  positive numbers.  Then there are sequences {Yi}~=I 

in X and posit ive numbers  {Ti}i~t such that ][xi - u~ll < ~ for every i and 

n A(E) = {0}. 

LEMMA 3.11: Let  T: Y -+ X be a bounded linear operator from a Banach 
O 0  space Y into a Banach space X such that c o d i m T ( Y )  -- co. Let  {~}i=I  be a 

normalized basic sequence in X that has a w*-limit point  F E X** \ X .  Then 

there are a subsequence {zik}~=l o f  { z i } ~ l  and a basic sequence {uk}~_l in 

X such that  lilnk []zik --~kll  = 0 and the closed linear span [Uk]k%1 of  
U oo satisfies [ k]k=l N T(}  r) = {0}. 
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Proof." Pu t  L1 = K e r F  C X*. By using L e m m a  3.9 find an f l  ~ SL~ with 

[]T*fl[] < 2 -2.  Since 0 is a lilnit point of the sequence {f l  (zi)}i~l it follows tha t  

there is a zi~ with [fl(zi~)[ < 2 -.2. Clearly, 

t e • < 2 -1 .  

L e t  .u 1 c B X be such tha t  f l (Vl)  > 1 - 2 -1.  Pu t  L2 = L1 n [zi~,vl] ±. Choose 
~ OIO f2 E SL~ with liT*f21[ < 2 -3 and, by using tha t  F is a w*-linlit point  of {~i}i=~ 

and f l , f 2  ~ K e r F ,  find a zi.~,i.~ > il ,  with [f~(zi~)[ < 2-3,  k = 1,2. We get 

sup{f#(t l=i ,  +t2z.i,_ + T y ) : t l , t 2  E [ - 1 , 1 ] , y E B y }  < 2  -k ,  k = 1 , 2 .  

Let, ( 'v i i21  C B x  be such tha t  ('vii[f, "~ ,f.2]}/=l is a 2-2-net. in B[A,f2].. Put. 
± 

La = L~ C~ [<~,vt],=l,2;t=l ..... ,~ and choose fa ~ SL~ such tha t  liT*fail < 2 -4 .  

By using tha t  F is a w*-limit point  of {2i}i-~a=l and f l ,  f2, fa E K e r F ,  find a 

z~3,i3 > i2, with [fk(zi~)[ < 2 - 4 , ~ :  = 1,2,3.  We get 

sup{fk(t~zi ,  + t.2zi,~ + tazia + Ty)  : t l ,  t2, ta ~ [ -1 ,  1], y E B y }  < 2 -L', k = 1, 2, 3. 

Let {.vl}~=3~ C B x  be such t h a t  {~tl[[f~,f._,,fa]}l=l is a 2-a -ne t  in B[ft,fe,f3].. It  

is clear how to continue this construction.  In this way we get a basic sequence 

{fk}~=l C Sx* and a subsequence {zi~. }~=1 such tha t  

(3 .1)  sup { f,, ( ~--~ tk:ik + Ty) : t~: E [-1,1], y C By } < 2 -m 
k = l  

holds for any ~ and m. 

We show tha t  codim([zik]~i?=l + T ( Y ) )  = oc. Pu t  E [~ik]k=l + ~  Y and define 

A: E --+ X as follows: 

A ( : r + y ) = 3 : + T y ,  x E  [zik]t.°°= l, y E } :  

In view of L e m m a  3.9 we have to check tha t  for any subspace L C X* of finite 

codimension and for any e > 0 there is an f E SL with [IA*f[I < e, i.e., 

sup tkzi~ + T y  : tt:z~ G , y  C B y  < e. 
\ k = l  k = l  

Let a and b be the basis constants  of the bases {fk} and {z~ k } respectively. Since 
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codim L = oo it follows tha t  for any m there is an f = En=rnCX) enfn E SL. Write 

) ( 5  )( ) ( 5 )  
k = l  - -  " k = l  " - -  

- ) 
<_4ab E Ic=/2al f= tk/2b)zik 

n = m  k = l  

o o  

+ 2a E ICn/2alllT*fnll 
n = m  

<_4ab E 2 -n  + 2a 2 - n - 1  _< 4ab2 -m+t + 2a2 -m.  
n ~ m  Y t ~ m  

By taking m large enough we complete the proof  tha t  codim([zik]~=l + T(Y) )  = 

c o d i m A ( E )  = co. 

Take any basic sequence {xk} C Sx and let {ek} be a stability sequence of 

this basic sequence. Apply Lemma 3.10 and find sequences {~/k} and {Yk} such 

tha t  Ilxk - Ykll < ek, k = 1,2 . . . . .  and 

(3.2) el co{+TkYk}~=l A A(E) = {0}. 

In particular,  {Yk} is a basic sequence. Wi thou t  loss of generality we may assume 

tha t  {Tk} is a stability sequence of a basic sequence {z/k} and ~--~k~__l 3~k < oo. 

Pu t  uk = zik + "/kYk, k = 1 ,  2 . . . . .  Clearly, {Uk} C X is a basic sequence with 

limllzi~ - u k l l  = 0. Check tha t  [uk] N T(Y)  = {0}. Let u = ~-~akuk e T(Y). 
We have u = ~ a k u k  = ~akzik + ~akTkYk E T(Y), and hence ~ a k T k y k  = 
u - -  ~akzik C A(E). By (3.2), ~akTkYk = 0. Since {Yk} is a basic sequence it 

follows tha t  ak = 0, k = 1, 2 . . . .  , i.e., u = 0 and the proof is complete. | 

Remark: The condition that  {~i}i=t has a w*-limit point F E X** ". X is not 

essential. Lemma 3.11 remains true without  this condition. Indeed, if a basic 

sequence {zi} C X does not have w*-limit points in X** \ X ,  then it w-converges 

to 0 and the same proof  works. 

Proof of Theorem 3.8: Let T: Y -+ X be a bounded linear operator  from a 

Banach space Y into X with T(Y) # X. Put  A = X \ T(Y) ,  and consider two 

cases according to Lemma 3.8. 

CASE 1: c o d i m T ( Y )  < co, and T(Y) is a proper closed subspace of X.  Then  

Bx N T(Y) is not  norming. By Proposi t ion 3.3 the set A has (**), and thus also 

(*) by Corollary 3.6. 
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CASE 2: c o d i m T ( Y )  = oc. Assume to the contrary tha t  there is a B C Sx* 

such that ,  for any x • X \ T(Y) ,  there is an f • B with f ( x )  = ]]x[] but  c l c o B  # 

B x . .  Let F • Sx .*  be such that  s u p { F ( f )  : f • B} < 1 - a,c~ > 0. Since X is 

separable and does not contain ll it follows from the Odell Rosenthal  theorem 

~ F .  It  is well-known tha t  tha t  there is a sequence {-~}i=l C S x  with w* limi zi = 

such a sequence contains a basic subsequence. Wi thou t  loss of generality we may 

assume tha t  {z~}~ 1 is basic. By Lemma 3.11 there is a sequence {uk}~=l in X 

such tha t  [uk]MT(Y) : {0} and lim~ ]lu~,-z~,]I = 0. Clearly, F = w* limk uk. Pu t  

E = [uk]; then BIE is a boundary  for Be*. By Corollary 2.4, c l c o B I E  = BE*. 

Since F • w* e l E  = E** and IIFI[ = 1 we deduce that  

sup{F(g)  : g E B} = s u p { F ( g ) :  g C BIE} = s u p { F ( g ) :  9 (5 BE.  } = 1. 

This, however, contradicts the choice of F .  I 

4. On  the  set  o f  funct iona l s  tha t  do  not  a t ta in  their  n o r m s  

In this section we prove several results on the size of the set X* \ E ( B x )  for 

non-reflexive X.  We use here the technique developed in Section 3. 

THEOREM 4.1: Let  X be a separable non-reflexive Banach space with unit ball 

B x . Let  a E (0, 1), ¢ > 0 with a( l + 2~ ) < 1, let O < ¢i < ~ for all i with linh ¢ ~ = 0 

and let {xi}i~=l C X .  P u t  D~ = S x  M (xi + a B x ) ,  i = 1, 2 . . . . .  A s sume  that  E is 

a closed subspace o f  X*  with ¢(X)  # E*, where ¢: X** --+ X * * / E  J- = E* is the 

natural quotient  map. Then there exists an h 6 SE with 

s u p { h ( y ) : y E D i } < < _ l - c i ,  i = 1 , 2  . . . . .  

Proof'. Without  loss of generality we may assume tha t  I lxill _< 2 for all i and 

tha t  {x~}~= 1 is dense in 2 B x .  Assume to the contrary that  for any h E SE there 

is an i such tha t  sup{h(y)  : y C Di}  > 1 - ei. 

Take/3 E (0, 1) so that. 

(4.J) r = ( 1 +  2 c ) ( a +  2(1 - fl))/fl  < 1, 

and put  

(4.2) 

OO 
and B = Ui=l c i  (we consider X in a natural  way as a subspace of  X** so ¢ is 

defined also on X) .  For any e C SE there is an x C S x  with e(x)  = ¢(x)(e)  and 
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¢(x) 
II~- ¢(x~)ll = II¢(x)ll 

Hence by (4.1) 

I[¢(x)l] as close to 1 as we wish. It  follows that  w*clco B -- BE.. Fix an i and 

z E Ci, where z = ¢(x)/ll¢(x)ll, x E Oi, II¢(x)ll >_/3. We have 

¢ ( x i )  + ¢(xi______~) ¢(xi) < a/~ + 2(1 - /3) / /3.  
II¢(x)ll II¢(x)ll 

(4.3) 
r r 

w* clcoC~ c ¢(xi)+ 1---j~BE. c ¢(xd + ~ B E . .  

Define now the sets V* and V as in Lemma 3.4, i.e., put 

oo 

V* = w* clco U ( 1  + 2ci)Ci, 
i = 1  

V = {x E E :  s u p { f ( x ) :  f e V*} _< 1}. 

By Lemma 3.4, (i), V C BE C (1 + 2a)V. 

Next we claim that  V C int BE. Indeed, if h E SE then by assumption we 

have, for some i, sup{h(y) : y G Di} > 1 - ai- Hence 

sup{h(x) : x  E ( l+2~i )Ci}  > sup{h(y) :  y E (1 +2c i )Di}  > ( 1 + 2 c , ) ( 1 - ~ i )  > 1, 

and thus h ~ V. 

By Lemma 3.4, (ii), we deduce that  for g E E(V) N OV* there is a finite l so 

that  
/ 

g E co U w* cleo(1 + 2xi)Ci, 
i = 1  

and thus by (4.3) 

d(g,¢(X)) < r < 1. 

Since c l¢ (X)  is a proper subspace of E* it follows from the Riesz lemma that  

there is a k e SE* with d(k, ¢(X))  > r. We have that  V* D BE., thus for some 

,~ >_ 1, Ak E OV*. By the Bishop Phelps theorem there is a g  E E(V)nOV* which 

is close to Ak so that  d(g, ¢(X))  > r. We have thus arrived at a contradiction. 

I 

Remark: The assumption in the statement of Theorem 4.1 clearly holds if we 

take E = X*. The condition ¢(X)  ~ E* is essential. Put  X = Z* for some 

Banach space Z and E = Z C Z** = X*. Then E C E(Bx) .  

In the previous theorem we dealt with balls of a "large" (close to 1) radius. In 

our next result we consider balls with a small radius. 
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PROPOSITION 4.2: Let Y be a separable non-reflexive Banach space. Then for 

every e > 0 there exists a closed convex bodvo V, C Y with ~l/'l+~ , C B y  C ~'," 

(with polar set V in Y* and bipolar set V* in Y**) such that, for every F E 

0V* N E(V) with d(F, Y) > e, we have 

or(F) = { f  E OV : F ( I )  = 1} C Y* \ E ( B y ) .  

Proof: Use Lemma 3.4 for X = Y * , B  = S~,(C X* = Y**) and Ci = 

(y~+~By)f~S~- where {y~} is a dense subset of Sy .  Define V and V* as in Lemma 

3.4 and put  V, = V* n Y. Clearly, V and V* are the polar (resp, bipolar) sets of 

l ' ; .  By Lemma 3.4 we have V C B y  C (1 + e ) V  and thus - L V ,  t+~ * C B y  C V,. Let 
o~ C f E 0V and ,r E Sy  be such that  f ( z )  = Ilzll. Since Sy  = Ui=~ ,i it follows tha t  

z E Cj for some j .  Hence (1 + s j ) : r  E V, and, as f E V, we have f ( (1  + e j ) z )  <_ 1 

and therefore Ilfll < 1. In other words 0V M E ( B y )  C i n t B y .  By Lemma 3.4 

(ii) we get that ,  for every F E E(V)  n 0 I  ..... with c~(F) A E ( B y )  = 0, we have for 

some finite 1 
l 

F E co U w 'e l  co (1 + c i ) G  
i=1 

and thus d(F, Y )  < ~. | 

Our next result, which uses again the notion of a proper operator  range, shows 

tha t  in every separable non-reflexive space the set of functionals which do not 

a t ta in  their max imum on the unit ball cannot  be too thin. 

THEOREM 4.3: Let X be a non-reflexive separable ,space. Then the set of 

bounded linear functionaN on X which do not attain their norm on B x  is not a 

subset of a proper operator range. 

Proof: Assume to the contrary that  there is a bounded linear operator  T: Y -+ 

X* such that  T(Y)  ¢; X* and each f E X * \ T ( Y )  at ta ins  its norm on B x .  

Consider two cases. 

CASE 1: c o d i m T ( Y )  < oc. Then T ( Y )  is a proper closed subspace of X* 

and thus B x -  A T ( Y )  is not norming for X**. By Proposi t ion 3.3 the cone 

A = X * \ T ( Y )  has (**). Pu t  B = S x  c X**. By our assumpt ion B is a 

(separable) B x .  "-.T(Y) boundary.  Hence, by Corollary 3.6, c l c o B  = Bx**, 

which is impossible. 

CASE 2: c o d i m T ( Y )  = oc. Since X is separable and non-reflexive, Bx* con- 

tains a sequence {f~ } which w*-converges to 0 but  does not have a w-limit point. 

Wi thou t  loss of generality we can assmne tha t  {f~} is a basic sequence. Let 
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F E X*** \ X* be a w*-limit point  of  {fi~}. By Lemma 3.11 there are a se- 

quence {uk} C X* mad a subsequenee {f,~k} of {fn} so tha t  limk t]uk -- fn~ I] = 0 

and [uk] N T(Y) = {0}. Let G e X*** ". X* be a w*-limit point  of {uk} .  Since 

{uk}  tends w* to 0 it follows tha t  G e X ±. Since [uk] n T ( Y )  = {0} it follows 

from our assumption tha t  S x  [lull (considered as a subset of [uk]*) is a separable 

boundary  for [uk]. By Corollary 3.6, B[u~l. is the closed convex hull of Sx[[~I. 
However, G E w* cl[uk] = [uk]**, G ¢ 0 and alx = 0. We have thus arrived at a 

contradiction. | 
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